Optgen: A Generator for Local Optimizations

Sebastian Buchwald

Local Optimizations

Local optimizations:

- IR level
- SSA form
- Data dependency graph
- Do not require any global analysis
- Can be applied at any time during compilation

Generation of Local Optimizations

Goal

Generate all local optimizations (up to a given cost limit).

Input:

- Set of operations and their costs
- Cost limit
- Bit width

Output:

- Complete set of verified local optimizations

Related Work - Peephole Generators

Assembly level

IR level

- Peephole of k instructions
- Architecture-specific
- Precise cost model
- Pattern of k values
- Independent of Architecture
- SSA form

Common Design of Peephole Generators

Generator Generates all possible instructions sequences
Semantic Checker Proofs the equivalence of two instruction sequences

Design of Optgen (so far)

Generator Generates all possible expressions
Semantic Checker Proofs the equivalence of two expressions

Design of Optgen (so far)

Semantic hash:

- Evaluate expression for precomputed test inputs
- semantic_hash $(x)=$ semantic_hash(x | 0)

Example

Optgen parameters:

- Operations:
- Constants (cost: 0)
- And (cost: 1)
- Or (cost: 1)
- Not (cost: 1)
- Cost limit: 2
- Bit width: 8

Example - Costs 0

Enumerate expressions with costs 0 :

- X
- 0
- 1
- 255

Example - Costs 1

Combine expressions with existing operations:

- y
- x \& x
- Same semantic hash class as x
- SMT check: x \& $\mathrm{x}=\mathrm{x}$
- Optimization: $\mathrm{x} \& \mathrm{x} \rightarrow \mathrm{x}$
- x \& 0
- Same semantic hash class as 0
- SMT check: x \& $0=0$
- Optimization: $\mathrm{x} \& 0 \rightarrow 0$

Example - Costs 2

Combine expressions with existing operations:

- ($x \& y$) \& 0
- Rule x \& $0 \rightarrow 0$ applicable
- No further action

Design of Optgen (so far)

Example - Constant Folding Rules

Constant folding rules:

- 0 \& $0 \rightarrow 0$
- 0 \& $1 \rightarrow 0$
- $0 \& 2 \rightarrow 0$
2^{16} rules
- $255 \& 255 \rightarrow 255$

Expected rule:

- c0 \& c1 \rightarrow eval (c0 \& c1)

Design of Optgen

Example - Generalize Rules

Generalize constant folding rules:

1. Introduce symbolic constants

- Like variables
- Allow constant folding

Example - Generalize Rules

Generalize constant folding rules:
2. Collect syntactically equivalent rules

Example - Generalize Rules

Generalize constant folding rules:
3. Replace constants of LHS with symbolic constants

Example - Generalize Rules

Generalize constant folding rules:

4. Iterate through generated expressions to find appropriate RHS

Example - Conditional Rules

Symbolic rules not sufficient:

- ($x \mid 2$) \& $1 \rightarrow x$ \& 1
- (x | 1) \& $2 \rightarrow x \& 2$
- ($x \mid 1$) \& $3 \nrightarrow x \& 3$

Example - Conditional Rules

Symbolic rules not sufficient:

- ($x \mid 2$) \& $1 \rightarrow x \& 1$
- ($x \mid 1$) \& $2 \rightarrow x \& 2$
- (x | 1) \& $3 \nrightarrow x \& 3$

Solution:

- Conditional rule: c0 \& c1 $==0 \Rightarrow(x \mid c 0) \& c 1 \rightarrow x \& c 1$
- Iterate through generated expressions to find appropriate condition
- Condition: c0 \& c1 == 0

Example - Result

Optgen finds 42 optimizations:

- 19 rules with symbolic constants
- 8 rules with condition
- 11 rules without condition
- 12 rules with non-symbolic constants
- 11 rules without constants

Example - Result

Optgen finds 42 optimizations:

- 19 rules with symbolic constants
- 8 rules with condition
- 11 rules without condition
- 12 rules with non-symbolic constants
- 11 rules without constants

Question

What happens if we use a bit width of 32 bit?

Example - Result

Optgen finds 42 optimizations:

- 19 rules with symbolic constants
- 8 rules with condition
- 11 rules without condition
- 12 rules with non-symbolic constants
- 11 rules without constants

Question

What happens if we use a bit width of 32 bit?

Extension to 32 Bit: Correctness

Basic idea:

- Generate rules for 8 bit
- Extend rules from 8 bit to 32 bit
- Verify extended rules for 32 bit

Extension of bit width:

- Rules without non-symbolic constants
- Independent of bit width
- $\mathrm{x} \& \mathrm{x} \rightarrow \mathrm{x}$
- Rules with non-symbolic constants
- Try to prepend or append 0/1 bits
- $\mathrm{x} \& 0 \mathrm{xFF} \rightarrow \mathrm{x}$
- $\mathrm{x} \& 0 \mathrm{xFF} 000000 \rightarrow \mathrm{x}$
- $\mathrm{x} \& 0 \mathrm{xFF} F \mathrm{FFFFF} \rightarrow \mathrm{x}$
- $\mathrm{x} \& 0 \mathrm{x} 000000 \mathrm{FF} \rightarrow \mathrm{x}$
- $\mathrm{x} \& 0 \mathrm{xFFFFFFFF} \rightarrow \mathrm{x}$
- Works fine in practice

Extension to 32 Bit: Completeness

Basic idea:

- Increase bit width until the number of rules stabilizes

Bit width	Number of rules
1	24
2	38
3	42
4	42
\ldots	\ldots
32	42

Drawback:

- Does not work for all operations

Evaluation

Full run:

- Operations: Constants, Minus, Not, Add, And, Or, Sub, Xor
- Cost limit: 2
- Generation: 8 bit
- Verification: 32 bit
- 6 h 7 min 0 s
- 1046568 kB

Testsuite:

- LLVM: 23 missing optimizations
- GCC: 27 missing optimizations
- ICC: 62 missing optimizations

Optimization Differences

Optimization	Compiler		
	LLVM	GCC	ICC
2. $-(\mathrm{x} \& 0 \mathrm{x} 80000000) \rightarrow \mathrm{x} \& 0 \mathrm{x} 80000000$	\times	\checkmark	\times
6. ($\mathrm{x} \mid 0 \mathrm{x} 80000000$) $+0 \mathrm{x} 80000000 \rightarrow \mathrm{x} \& 0 \mathrm{x} 7 \mathrm{FFFFFFF}$	\checkmark	\times	\times
11. $\mathrm{x} \&(\mathrm{x}+0 \mathrm{x} 80000000) \rightarrow \mathrm{x} \& 0 \mathrm{x} 7 \mathrm{FFFFFFF}$	\checkmark	\times	\times
14. $-\mathrm{x} \& 1 \rightarrow \mathrm{x} \& 1$	\times	\checkmark	\times
17. $\mathrm{x}\|(\mathrm{x}+0 \mathrm{x} 80000000) \rightarrow \mathrm{x}\| 0 \mathrm{x} 80000000$	\checkmark	\times	\times
20. $\mathrm{x}\|~(\mathrm{x} \oplus \mathrm{y}) \rightarrow \mathrm{x}\| \mathrm{y}$	\checkmark	\times	\times
*21. $((c 0 \mid-c 0) \& \sim c 1)==0 \Rightarrow(x+c 0)\|c 1 \rightarrow x\| c 1$	\checkmark	\times	\checkmark
25. $0-(\mathrm{x} \& 0 \mathrm{x} 80000000) \rightarrow \mathrm{x} \& 0 \mathrm{x} 80000000$	\times	\checkmark	\times
30. $\mathrm{x} \oplus(\mathrm{x}+0 \mathrm{x} 80000000) \rightarrow 0 \mathrm{x} 80000000$	\checkmark	\times	\times
35. (0x7FFFFFFF -x) $\oplus 0 \times 80000000 \rightarrow \sim x$	\times	\checkmark	\times
36. $(0 \times 80000000-\mathrm{x}) \oplus 0 \times 80000000 \rightarrow-\mathrm{x}$	\times	\checkmark	\times
43. $\sim(\mathrm{x}+\mathrm{c}) \rightarrow \sim \mathrm{c}-\mathrm{x}$	\checkmark	\times	\times
54. $\sim(\mathrm{c}-\mathrm{x}) \rightarrow \mathrm{x}+\sim \mathrm{c}$	\checkmark	\times	\times
60. $(\mathrm{c} 0 \& \sim \mathrm{c} 1)=0 \Rightarrow(\mathrm{x} \oplus \mathrm{c} 0)\|\mathrm{c} 1 \rightarrow \mathrm{x}\| \mathrm{c} 1$	\checkmark	\times	\times
Missing optimizations	5	9	$13(+32)$

Unsupported Optimizations

Optimization	Compiler		
	LLVM	GCC	ICC
5. $\mathrm{x}+(\mathrm{x} \& 0 \mathrm{x} 80000000) \rightarrow \mathrm{x} \& 0 \mathrm{x} 7 \mathrm{FFFFFFF}$	\times	\times	\times
13. $\mathrm{x} \&$ (0 x 7 FFFFFFF - x$) \rightarrow \mathrm{x} \& 0 \mathrm{x} 80000000$	\times	\times	\times
$\begin{aligned} & \text { * 16. is_power_of_2(c1) \&\& c0 \& }(2 * c 1-1)==c 1-1 \\ & \Rightarrow(c 0-x) \& c 1 \rightarrow x \& c 1 \end{aligned}$	\times	\times	\times
19. $\mathrm{x} \mid$ (0x7FFFFFFF - x) $\rightarrow \mathrm{x} \mid 0 \mathrm{x} 7 \mathrm{FFFFFFFF}$	\times	\times	\times
* 22. is_power_of_2 \sim c1) \&\& c0 \& $(2 * \sim c 1-1)==\sim c 1-1$			
$\Rightarrow(\mathrm{c} 0-\mathrm{x})\|\mathrm{c} 1 \rightarrow \mathrm{x}\| \mathrm{c} 1$	\times	\times	\times
23. $-\mathrm{x}\|0 \mathrm{xFFFFFFFE} \rightarrow \mathrm{x}\| 0 \times \mathrm{FFFFFFFFE}$	\times	\times	\times
26. 0x7FFFFFFF - (x\& 0x80000000) $\rightarrow \mathrm{x} \mid 0 \mathrm{x} 7 \mathrm{FFFFFFF}$	\times	\times	\times
27. 0x7FFFFFFF - (x\|0x7FFFFFFF) $\rightarrow \mathrm{x} \& 0 \mathrm{x} 80000000$	\times	\times	\times
28. $0 \times \mathrm{xFFFFFFFE}-(\mathrm{x} \mid 0 \mathrm{x} 7 \mathrm{FFFFFFF}) \rightarrow \mathrm{x} \mid 0 \mathrm{x} 7 \mathrm{FFFFFFF}$	\times	\times	\times
29. ($\mathrm{x} \& 0 \mathrm{x} 7 \mathrm{FFFFFFF}$) $-\mathrm{x} \rightarrow \mathrm{x} \& 0 \mathrm{x} 80000000$	\times	\times	\times
31. $\mathrm{x} \oplus(0 \mathrm{x} 7 \mathrm{FFFFFFF}-\mathrm{x}) \rightarrow 0 \mathrm{x} 7 \mathrm{FFFFFFF}$	\times	\times	\times
32. ($\mathrm{x}+0 \mathrm{x} 7 \mathrm{FFFFFFF}$) $\oplus 0 \mathrm{x} 7 \mathrm{FFFFFFF} \rightarrow-\mathrm{x}$	\times	\times	\times
34. $-\mathrm{x} \oplus 0 \mathrm{x} 80000000 \rightarrow 0 \mathrm{x} 80000000-\mathrm{x}$	\times	\times	\times
39. (0x7FFFFFFF - x ${ }^{\text {c }} \oplus 0 \mathrm{x} 7 \mathrm{FFFFFFF} \rightarrow \mathrm{x}$	\times	\times	\times
48. $-\mathrm{x} \oplus 0 \mathrm{x} 7 \mathrm{FFFFFFF} \rightarrow \mathrm{x}+0 \mathrm{x} 7 \mathrm{FFFFFFF}$	\times	\times	\times
52. ($\mathrm{x} \mid \mathrm{c}$) $-\mathrm{c} \rightarrow \mathrm{x} \& \sim \mathrm{c}$	\times	\times	\times
57. $-\mathrm{c} 0==\mathrm{c} 1 \Rightarrow(\mathrm{x} \mid \mathrm{c} 0)+\mathrm{c} 1 \rightarrow \mathrm{x} \& \sim \mathrm{c} 1$	\times	\times	\times
62. $0 \mathrm{x} 7 \mathrm{FFFFFFF}-(\mathrm{x} \oplus \mathrm{c}) \rightarrow \mathrm{x} \oplus(0 \mathrm{x} 7 \mathrm{FFFFFFF}-\mathrm{c})$	\times	\times	\times

Conclusion

Optgen

- is the first generator that supports arbitrary constants
- guarantees correctness and completeness of generated optimizations
- has revealed missing optimizations in all state-of-the-art compilers

There is more wisdom in the paper.

No

Optimizations 1/5

Optimization	Compiler		
	LLVM	GCC	ICC
1. $-\sim \mathrm{x} \rightarrow \mathrm{x}+1$	\checkmark	\checkmark	\times
2. $-(x \& 0 \times 80000000) \rightarrow \mathrm{x} \& 0 \times 80000000$	\times	\checkmark	\times
3. $\sim-\mathrm{x} \rightarrow \mathrm{x}-1$	\checkmark	\checkmark	\times
4. $\mathrm{x}+\sim \mathrm{x} \rightarrow$ OxFFFFFFFF	\checkmark	\checkmark	\times
5. $\mathrm{x}+(\mathrm{x} \& 0 \mathrm{x} 80000000) \rightarrow \mathrm{x} \& 0 \mathrm{x} 7 \mathrm{FFFFFFF}$	\times	\times	\times
6. ($\mathrm{x} \mid 0 \times 80000000$) +0x80000000 $\rightarrow \mathrm{x} \& 0 \mathrm{x} 7 \mathrm{FFFFFFF}$	\checkmark	\times	\times
7. ($\mathrm{x} \& 0 \mathrm{x} 7 \mathrm{FFFFFFF}$) $+(\mathrm{x} \& 0 \mathrm{x} 7 \mathrm{FFFFFFF}) \rightarrow \mathrm{x}+\mathrm{x}$	\checkmark	\checkmark	\times
8. $(\mathrm{x} \& 0 \times 80000000)+(\mathrm{x} \& 0 \times 80000000) \rightarrow 0$	\checkmark	\checkmark	\times
9. ($\mathrm{x} \mid 0 \times \mathrm{x} 7 \mathrm{FFFFFFF}$) $+(\mathrm{x} \mid 0 \times 7 \mathrm{FFFFFFF}) \rightarrow$ 0xFFFFFFFE	\checkmark	\checkmark	\times
10. $(\mathrm{x} \mid 0 \times 80000000)+(\mathrm{x} \mid 0 \times 80000000) \rightarrow \mathrm{x}+\mathrm{x}$	\checkmark	\checkmark	\times
11. $x \&(x+0 x 80000000) \rightarrow \mathrm{x} \& 0 \mathrm{x} 7 \mathrm{FFFFFFF}$	\checkmark	\times	\times
12. $\mathrm{x} \&(\mathrm{x} \mid \mathrm{y}) \rightarrow \mathrm{x}$	\checkmark	\checkmark	\times
13. $\mathrm{x} \&(0 \mathrm{x} 7 \mathrm{FFFFFFF}-\mathrm{x}) \rightarrow \mathrm{x} \& 0 \mathrm{x} 80000000$	\times	\times	\times
14. $-\mathrm{x} \& 1 \rightarrow \mathrm{x} \& 1$	\times	\checkmark	\times
15. $(x+x) \& 1 \rightarrow 0$	\checkmark	\checkmark	\times
16. is_power_of_2(c1) \&\& c0 \& ($2 * \mathrm{c} 1-1$) $==\mathrm{c} 1-1$			
$\Rightarrow(c 0-x) \& c 1 \rightarrow x \& c 1$	\times	\times	\times
Sum	23	27	62

Optimizations 2/5

Optimization	Compiler		
	LLVM	GCC	ICC
17. $\mathrm{x}\|(\mathrm{x}+0 \times 80000000) \rightarrow \mathrm{x}\| 0 \times 80000000$	\checkmark	\times	\times
18. $\mathrm{x} \mid(\mathrm{x} \& \mathrm{y}) \rightarrow \mathrm{x}$	\checkmark	\checkmark	\times
19. $\mathrm{x} \mid$ (0x7FFFFFFF - x) $\rightarrow \mathrm{x} \mid 0 \mathrm{x} 7 \mathrm{FFFFFFFF}$	\times	\times	\times
20. $\mathrm{x}\|(\mathrm{x} \oplus \mathrm{y}) \rightarrow \mathrm{x}\| \mathrm{y}$	\checkmark	\times	\times
21. $((\mathrm{co} \mid-\mathrm{c} 0) \& \sim \mathrm{c} 1)=0 \Rightarrow(\mathrm{x}+\mathrm{c} 0)\|\mathrm{c} 1 \rightarrow \mathrm{x}\| \mathrm{c} 1$	\checkmark	\times	\checkmark
22. is_power_of_2($\sim c 1) \& \& c 0 \&(2 * \sim c 1-1)==\sim c 1-1$			
$\Rightarrow(\mathrm{co}-\mathrm{x})\|\mathrm{c} 1 \rightarrow \mathrm{x}\| \mathrm{c} 1$	\times	\times	\times
23. -x\| OxFFFFFFFE $\rightarrow \mathrm{x} \mid 0 \mathrm{xFFFFFFFE}$	\times	\times	\times
24. ($\mathrm{x}+\mathrm{x}$) \| OxFFFFFFFE \rightarrow OxFFFFFFFE	\checkmark	\checkmark	\times
25. $0-(\mathrm{x} \& 0 \times 80000000) \rightarrow \mathrm{x} \& 0 \times 80000000$	\times	\checkmark	\times
26. $0 \times$ P7FFFFFF - ($\mathrm{x} \& 0 \mathrm{x} 80000000$) $\rightarrow \mathrm{x} \mid 0 \mathrm{x} 7 \mathrm{FFFFFFF}$	\times	\times	\times
27. $0 \times$ 7FFFFFFF - ($\mathrm{x} \mid 0 \mathrm{x} 7 \mathrm{FFFFFFF}$) $\rightarrow \mathrm{x} \& 0 \times 80000000$	\times	\times	\times
28. OxFFFFFFFE-(x\|0x7FFFFFFF) \rightarrow x 0 0x7FFFFFFF	\times	\times	\times
29. ($\mathrm{x} \& 0 \mathrm{x} 7 \mathrm{FFFFFFF}$) $-\mathrm{x} \rightarrow \mathrm{x} \& 0 \mathrm{x} 80000000$	\times	\times	\times
30. $\mathrm{x} \oplus(\mathrm{x}+0 \times 80000000) \rightarrow 0 \times 80000000$	\checkmark	\times	\times
31. $\mathrm{x} \oplus(0 \mathrm{x} 7 \mathrm{FFFFFFF}-\mathrm{x}) \rightarrow 0 \mathrm{x} 7 \mathrm{FFFFFFF}$	\times	\times	\times
32. ($\mathrm{x}+0 \mathrm{x} 7 \mathrm{FFFFFFF}$) \oplus 0x $7 \mathrm{FFFFFFF} \rightarrow-\mathrm{x}$	\times	\times	\times
Sum	23	27	62

Optimizations 3/5

Optimization		Compiler		
		LLVM	GCC	ICC
33.	($\mathrm{x}+0 \times 80000000$) \oplus 0x7FFFFFFF $\rightarrow \sim \mathrm{x}$	\checkmark	\checkmark	\times
34.	$-\mathrm{x} \oplus 0 \times 80000000 \rightarrow 0 \times 80000000-\mathrm{x}$	\times	\times	\times
35.	(0x7FFFFFFF -x) $\oplus 0 \times 80000000 \rightarrow \sim x$	\times	\checkmark	\times
36.	$(0 \times 80000000-x) \oplus 0 \times 80000000 \rightarrow-x$	\times	\checkmark	\times
37.	($\mathrm{x}+0 \mathrm{xFFFFFFFF}$) $\oplus 0 \times \mathrm{xFFFFFFF} \rightarrow-\mathrm{x}$	\checkmark	\checkmark	\times
38.	$(\mathrm{x}+0 \times 80000000) \oplus 0 \times 80000000 \rightarrow \mathrm{x}$	\checkmark	\checkmark	\times
39.	(0x7FFFFFFF-x) $\oplus 0 \times 7$ FFFFFFF $\rightarrow \mathrm{x}$	\times	\times	\times
	$x-(x \& c) \rightarrow x \& \sim c$	\checkmark	\checkmark	\times
	$\mathrm{x} \oplus(\mathrm{x} \& \mathrm{c}) \rightarrow \mathrm{x} \& \sim \mathrm{c}$	\checkmark	\checkmark	\times
	$\sim x+c \rightarrow(c-1)-x$	\checkmark	\checkmark	\times
	$\sim(\mathrm{x}+\mathrm{c}) \rightarrow \sim \mathrm{c}-\mathrm{x}$	\checkmark	\times	\times
44.	$-(x+c) \rightarrow-c-x$	\checkmark	\checkmark	\times
	$c-\sim x \rightarrow x+(c+1)$	\checkmark	\checkmark	\times
	$\sim x \oplus c \rightarrow x \oplus \sim c$	\checkmark	\checkmark	\times
	$\sim x-c \rightarrow \sim c-x$	\checkmark	\checkmark	\times
48.	-x \oplus - 7 7 FFFFFFF $\rightarrow \mathrm{x}+0 \mathrm{x} 7 \mathrm{FFFFFFF}$	\times	\times	\times
Sum		23	27	62

Optimizations 4/5

Optimization	Compiler		
	LLVM	GCC	ICC
49. $-\mathrm{x} \oplus$ OxFFFFFFFF $\rightarrow \mathrm{x}-1$	\checkmark	\checkmark	\times
50. $\mathrm{x} \&(\mathrm{x} \oplus \mathrm{c}) \rightarrow \mathrm{x} \& \sim \mathrm{c}$	\checkmark	\checkmark	\times
51. $-\mathrm{x}-\mathrm{c} \rightarrow-\mathrm{c}-\mathrm{x}$	\checkmark	\checkmark	\times
52. ($\mathrm{x} \mid \mathrm{c}$) $-\mathrm{c} \rightarrow \mathrm{x} \& \sim \mathrm{c}$	\times	\times	\times
53. $(\mathrm{x} \mid \mathrm{c}) \oplus \mathrm{c} \rightarrow \mathrm{x} \& \sim \mathrm{c}$	\checkmark	\checkmark	\times
54. $\sim(\mathrm{c}-\mathrm{x}) \rightarrow \mathrm{x}+\sim \mathrm{c}$	\checkmark	\times	\times
55. $\sim(\mathrm{x} \oplus \mathrm{c}) \rightarrow \mathrm{x} \oplus \sim \mathrm{c}$	\checkmark	\checkmark	\times
56. $\sim \mathrm{c} 0=\mathrm{c} 1 \Rightarrow(\mathrm{x} \& \mathrm{c} 0) \oplus \mathrm{c} 1 \rightarrow \mathrm{x} \mid \mathrm{c} 1$	\checkmark	\checkmark	\times
57. $-\mathrm{c} 0=\mathrm{c} 1 \Rightarrow(\mathrm{x} \mid \mathrm{c} 0)+\mathrm{c} 1 \rightarrow \mathrm{x} \& \sim \mathrm{c} 1$	\times	\times	\times
58. $(\mathrm{x} \oplus \mathrm{c})+0 \times 80000000 \rightarrow \mathrm{x} \oplus(\mathrm{c}+0 \times 80000000)$	\checkmark	\checkmark	\times
59. $((\mathrm{co\mid} ~-c 0) \& c 1)==0 \Rightarrow(x \oplus c 0) \& c 1 \rightarrow \mathrm{x} \& \mathrm{c} 1$	\checkmark	\checkmark	\times
60. $(\mathrm{c} 0 \& \sim \mathrm{c} 1)=0 \Rightarrow(\mathrm{x} \oplus \mathrm{c} 0)\|\mathrm{c} 1 \rightarrow \mathrm{x}\| \mathrm{c} 1$	\checkmark	\times	\times
61. $(x \oplus c)-0 \times 80000000 \rightarrow x \oplus(c+0 \times 80000000)$	\checkmark	\checkmark	\times
62. Ox7FFFFFFF - $\mathrm{x} \oplus \mathrm{c}$) $\rightarrow \mathrm{x} \oplus(0 \mathrm{x} 7 \mathrm{FFFFFFF}-\mathrm{c})$	\times	\times	\times
63. OXFFFFFFFF - $\mathrm{x} \oplus \mathrm{c}$) $\rightarrow \mathrm{x} \oplus(0 \mathrm{xFFFFFFFF}-\mathrm{c})$	\checkmark	\checkmark	\times
Sum	23	27	62

Optimizations 5/5

Optimization		Compiler		
		LLVM	GCC	ICC
1.	$\sim(x \mid \sim y) \rightarrow \sim x \& y$	\times	\checkmark	
2.	$\sim(x \& \sim y) \rightarrow \sim x \mid y$	\times	\checkmark	
3.	$(x+x) \&(y+y) \rightarrow(x \& y)+(x \& y)$	\times		
4.	$(x+x) \mid(y+y) \rightarrow(x \mid y)+(x \mid y)$	\times		
5.	$(x \& y) \mid(z \& y) \rightarrow y \&(x \mid z)$	\checkmark	\times	\checkmark
6.	$x-((x-y)+(x-y)) \rightarrow y+(y-x)$		\checkmark	\times
7.	$(x-y)-(x+z) \rightarrow-(y+z)$	\checkmark	\checkmark	\times
8.	$((x-y)+(x-y))-x \rightarrow x-(y+y)$	\checkmark	\checkmark	\times
9.	$(x+x) \oplus(y+y) \rightarrow(x \oplus y)+(x \oplus y)$	\times		
10.	$(x \& y) \oplus(z \& y) \rightarrow y$ \& $(x \oplus z)$	\checkmark	\times	\checkmark

State-of-the-art compilers apply optimizations rules even if the operands are shared. If the compiler supports the optimization \checkmark / \times indicates whether the compiler prevents the optimization in case of shared operands. If the compiler does not support the optimization the item is left blank.

