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Abstract. This paper deals with coalescing in SSA-based register allo-
cation. Current coalescing techniques all require the interference graph
to be built. This is generally considered to be too compile-time intensive
for just-in-time compilation. In this paper, we present a biased coloring
approach that gives results similar to standalone coalescers while signif-
icantly reducing compile time.

1 Introduction

The register allocation phase of a compiler maps the variables of a program to
the registers of the processor. One important part of register allocation is co-
alescing. Coalescing is an optimization that tries to remove register-to-register
move instructions by assigning the source and the target of the move the same
register. One serious drawback of coalescing is that it can increase the register
demand of the program. Consider the example in Figure 1. The register demand

a← · · ·

d← · · ·
e1 ← a+ · · ·
← d

b← · · ·
c← a+ · · ·
e2 ← b
← c

e3 ← φ(e1, e2)

(a) Program P

a← · · ·

d← · · ·
e← a+ · · ·
← d

b← · · ·
c← a+ · · ·
e← b
← c

(b) Program P ′
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Fig. 1: Coalescing a φ-function

in the SSA-form program P is 2 everywhere. If we perform classical SSA de-
struction and coalesce the move instructions represented by the φ-function, that
is merge the live ranges of e1, e2, and e3 into one (as shown in P ′), we need



3 registers for a valid register assignment, as can be verified by coloring the
interference graph G of P ′.

Chaitin et al. [1] express register allocation by graph coloring and show
that, if one makes no assumption about coalescing, every undirected interference
graph G corresponds to a program P for which holds: An optimal register allo-
cation for P is an optimal coloring of G. Although this approach is very popular,
it has two undesirable properties:

– Because graph coloring is NP-complete, we need a heuristic to color such
a graph. Hence, we might fail to color a graph with k colors although the
graph is k colorable. For register allocation this means that we unnecessarily
spill variables to memory.

– For any given n ∈ N there exists a graph that has a largest clique of size l
but needs l + n colors for an optimal coloring. The size of the largest clique
in that graph corresponds to the register pressure in the program. Hence, as
in the example above, we need l+n registers although there are never more
than l variables alive.

Consequently, recent register allocation approaches do not allow arbitrary
coalescing of live ranges: In an SSA-form program, some live ranges are split by
φ-functions. This splitting is sufficient to overcome both drawbacks mentioned
above (see [2–4] for proofs):

1. An optimal register assignment can be computed in linear time.
2. The register pressure equals the minimum number of registers needed for

the program.

Live-range splitting by φ-functions is not the only source of move instructions
in a program. Treating register constraints as they are incurred by some archi-
tectures and application binary interfaces, also provokes the insertion of move
instructions: Assume a variable v is an argument to a function call and the ABI
dictates that it has to be in register R1. Then, we need to move v to R1 in front
of the call. On the other hand, if we assigned R1 to v in the first place, we can
save this move.

All these live-range splits result in move instructions. Usually, reducing the
number of move instructions is the task of the coalescing phase of a register
allocator. However, most of the existing coalescing techniques are very compile-
time intensive: They all require the interference graph to be materialized as a
data structure. Some of them even perform updates on that graph. However,
in just-in-time compilation, constructing and updating the interference graph is
considered too costly.

1.1 Contributions

In this paper, we pursue a new approach to coalescing: We assume that spilling
already took place and the register pressure everywhere in the program is ≤ k,
where k is the number of available registers. Instead of delegating coalescing to



a separate phase, we make the assignment pass aware of move instructions by
biasing the assignment: We try to assign sources and targets of move instructions
the same register. To this end, we extend the conventional SSA register allocation
algorithm by the following techniques:

– We compute register preferences for each variable. These preferences reflect
the register constraints the variable is exposed to. Hence, instead of non-
deterministically choosing a register during the assignment phase, we are
able to make a more profound register choice. In doing so, we avoid many of
the moves that are usually inserted due to register constraints. Section 3.1
discusses register preferences in more detail.

– When coloring the target of a move, e.g. the result of a φ-function, we prop-
agate preferences for that color to the not-yet-colored sources, in this case
the operands of the φ-function. Thus, when those variables are to be colored,
we attempt to assign them the same register as the target of the φ-function.
Section 3.3 gives a detailed discussion.

– When a variable is assigned to a register and the most preferable register
is occupied by another variable, we allow for optimistically moving the oc-
cupying variable to a different register. Placing a variable in the preferred
register from the start is often better than doing it right in front of the
program point that caused the preference: If we assume that the register is
occupied at that point we need two moves (one to free the register and one
to move the variable to it) instead of the one needed to free the register upon
the variable’s definition. Details are discussed in Section 3.4.

– Based on profile data or estimated execution frequencies, we compute an
order of the basic blocks in a control-flow graph that aids in removing more
moves on frequently executed traces of the CFG (Section 4).

Our experimental evaluation (see Section 5) shows that coalescing in an SSA-
based register allocator is important: The runtime of the benchmarks is decreased
by 5% and the number of executed move instructions is decreased by 55% per-
cent. Compared to our previous work based on graph recoloring [5], register
allocation and coalescing is 2.27 times faster. Our compile-time measurements
show a linear behavior of the presented algorithm.

2 SSA-based Register Allocation

This section reviews the basics of SSA-based register allocation and describes
how register constraints are treated by an SSA-based allocator.

Register allocation on the SSA form uses the live-range splitting caused by
φ-functions. The φ-functions of a basic block basically act as control-flow depen-
dent parallel moves (see Figure 2). This splitting and the dominance property
of the SSA form3 cause the interference graphs for SSA-form programs to be
chordal (see [2–4] for proofs). Chordal graphs have two properties that make
them appealing for register allocation:
3 The fact that each use of a variable is dominated by its definition.



x3 ← φ(x1, x2)
y3 ← φ(y1, y2)

(x3, y3)← (x1, y1) (x3, y3)← (x2, y2)

Fig. 2: φ-functions are parallel Moves

1. They are optimally colorable in time O(ω(G) · |V |) where ω(G) is the size of
the largest clique in G and V is the set of G’s nodes.

2. The size of the largest clique in the graph is equal to the minimum number
of colors needed for a coloring - the graph’s chromatic number.

Furthermore, for each clique in the interference graph there is a location in the
program where all the variables of the clique are alive. Thus, unlike conventional
graph-coloring register allocation, lowering the register pressure to the number of
available registers k results in a k-colorable interference graph. Hence, pressure-
based spilling heuristics [6–8] already lead to k-colorable interference graphs.

2.1 Register Assignment

After the spilling phase has lowered the register pressure everywhere to at most k,
registers can be assigned. While the interference graph is helpful to reason about,
it actually never has to be built as a data structure when assigning registers. A
SSA interference graph can be colored using a node elimination algorithm like
the one used by Chaitin et al. [1] in their seminal paper. However, the advantage
of SSA-based register allocation is that this elimination order coincides with
dominance:

Before a variable v can be eliminated, all variables that dominate v and
interfere with v have to be eliminated.

Consequently, an order that colors a program point only after its dominators
have been colored leads to an optimal coloring of the SSA interference graph.

Algorithm 1 shows the assignment pass for a single basic block B. This
algorithm is then applied to every basic block such that the immediate dominator
of B is processed before B itself (in Section 4 we propose a specific coloring
order). We maintain a bit set occupied of registers used by currently live variables.
We initialize this bitset with the registers of the values that are live-in at the
beginning of B. Note that all live-in values already have a register assigned
because:

1. The definition of a variable dominates all program points where it is alive.
2. All dominators of B have already been processed.



Then, all φ-functions of B are assigned. The arguments of the φ-functions are
ignored in B because they correspond to move instructions in the predecessor
blocks and hence don’t represent live values in B.

The instructions inside the basic block are now processed in order: For every
variable that dies at a program point, the register is put back into the pool of
free registers. For every value which is defined by an instruction, a free register
is chosen (function get register) and put into the occupied set.

Algorithm 1 Coloring of a basic block

proc color block(block):
# Determine initial register occupation and color φ−nodes
occupied ← ∅
for val in block.live in:

occupied ← occupied ∪ { val.register }
for phi in block.phi nodes:

phi.register ← get register(phi, occupied)
occupied ← occupied ∪ { phi.register }

# Assign registers
for insn in block.instructions:

enforce constraints(insn)
for a in insn.arguments:

if dies(a, insn):
occupied ← occupied \ { a.register }

for r in insn.results:
r.register ← get register(r, occupied)
occupied ← occupied ∪ { r.register }

block.processed ← true
# Create φ−moves where necessary
for pred in block.preds:

if pred.processed:
implement phi copies(pred, block)

for succ in block.succs:
if succ.processed:

implement phi copies(block, block.succs[0])

2.2 Register Constraints

In practice, the instruction set architecture (ISA) and the application binary
interface (ABI) impose several constraints on the registers that are allocatable



for a variable at a program point. Most prominent and omnipresent are caller-
and callee-save registers across function calls. For example, the x86 ABIs state
that the contents of the registers eax, ecx, and edx are destroyed after a function
call. The return value of a function returning an int is delivered in eax.

Traditionally, such constraints are handled by splitting the live ranges of all
variables alive across such a constrained instruction by inserting a parallel move
instruction. In doing so, all registers become available in front of that instruction
and the assignment pass can easily compute an assignment that fulfills these
constraints. In Algorithm 1 this is expressed by the function enforce constraints
which we do not describe in further detail here. Figure 3 gives an example of a
constrained call instruction and the inserted parallel move4.

w〈R0〉 ← call(x〈R1〉, y〈R2〉)
...

uses of x, y, z, w

(a) A constrained instruction

(x′〈R1〉, y′〈R2〉, z′)← (x, y, z)
w〈R0〉 ← call(x′, y′)

...
uses of x′, y′, z′, w

(b) Splitting live ranges

Fig. 3: A call instruction with register constraints

To model register constraints, we annotate every program point ` with two
partial functions (one for the defined and one for the used variables) that map
a variable that has a register constraint at that program point to the register it
is required to be in:

construse
` : Var ↪→ Reg constrdef

` : Var ↪→ Reg

where Var is the set of variables and Reg ⊂ N is the set of registers. For the
example in Figure 3, we have:

construse
` (x) = R1, construse

` (y) = R2 constrdef
` (w) = R0

2.3 Implementing Parallel Moves

The parallel move instructions are implemented after register assignment. Con-
cerning the assigned registers, a parallel move corresponds to a register permu-
tation that can be implemented with moves, swaps, xors, and so on [9]. For
example, assume our architecture has four registers. Consider the following par-
allel move and a register allocation (indicated by the superscripts):

Move: (a4, b2, c3)← (d3, e1, f4) Permutation:
[
2 3 4
1 4 3

]
4 Register constraints are indicated in angle brackets.



This can be implemented with the following sequence of instructions:

move R2← R0
swap R3, R4

3 Coalescing with Register Preferences

In principle, Algorithm 1 can compute any legal register assignment for a CFG.
The set of valid register allocations is basically characterized by the freedom of
the function get register: Whenever a register is assigned to a variable, get register
can choose among a set of free registers. However, regarding coalescing, not all
valid allocations are equally preferable. An allocation in which many sources
and targets of moves have the same color is better because it will result in less
shuffle code in the program. Given an oracle telling us the best register for each
variable, the algorithm would produce an optimal coalescing5.

Algorithm 2 Choosing a register by preference

proc get register(var, occupied):
sort var.prefs by preference
for (reg,pref) in var.prefs:

if reg /∈ occupied:
return reg

Unfortunately the coalescing problem is NP-hard even for programs in SSA-
form [9, 3]. We thus rely on a heuristic approach that is guided by register prefer-
ences which are calculated before coloring and can be updated while allocating.
To this end, we introduce a preference analysis that computes a preference vec-
tor for every variable. Such a vector has a component for every register. The
higher the value of a component, the more preferable it is to assign the variable
to the corresponding register. This vector is then used by get register to select a
“good” register (see Algorithm 2). The following sections describe the preference
analysis and a mechanism to adjust the preferences while assigning registers for
φ-functions.

3.1 Register Preferences

Consider the example in Figure 4a. Assume the set of available registers when y
is colored to be {R0, R2} and assume the allocator (nondeterministically) chooses
R2. Then, in front of its use, y has to be moved from R2 to R0 in order to fulfill

5 Optimal for a given set of parallel moves. There are cases where a different placement
of parallel moves can lead to a better overall result.



the register constraint. If the allocator knew that y is needed in R0, it could have
selected it in the first place.

To make a sensible choice in the presence of register constraints, we need to
propagate information from constrained uses of variables to the point where the
color selection is done.

x←
y ←

z〈R1〉 ←
← y〈R0〉
← z
← x

Var Preference vector
x [−1,−1, 0, 0]
y [0,−2,−1,−1]
z [−2, 0,−1,−1]

(a) Constrained live ranges

x← · · ·

z ← φ(x, y)
...
← z

y〈R0〉 ← · · ·

(b) A φ-function with
constrained arguments

Fig. 4: Examples for Preferences and constrained φ-functions

Reconsider the live ranges in Figure 4a. When assigning registers to the
variables, we first assign a color to x. Since x interferes with two variables (y,
z) which have constrained definitions or uses to R1 and R0, it would be good
to choose one of the other registers: R2 or R3. If we would assign x to R0, we
would have to move it aside to make room for y right in front of its constrained
use. Correspondingly, the variables y and z should have a strong dislike for all
registers other than the ones occurring in their constraints. Furthermore, they
interfere with each other, so they have an even stronger dislike for each other’s
preferred register. Our analysis which is explained in the next section, computes
the preference vectors shown in Figure 4a.

Thus, the allocator puts x in register R2 or R3 and leaves R0 and R1 untouched.
y and z can then be directly allocated to R0 and R1 obviating any moves.

3.2 Preference Analysis

The register preference vector pref (v) of a variable v is given by

pref (v) =
∑

{`|v is alive before `}

f` · c use
` (v)

+
∑

{`|v is alive after `}

f` · c def
` (v)



where f` denotes the execution frequency of program point `. This execution
frequency can either be gathered from profile data or estimated (see e.g. [10]). For
the sake of brevity, let � ∈ {use, def }. c�

` (v) is the constraint vector concerning
the used (defined) variables of program point ` for variable v:

c�
` (v) :=

{
ei − 1 if v ∈ dom constr�

` and i = constr�
` (v)

−
∑

i∈R ei else with R = ran constr�
`

where ei is the vector that is one at component i and zero everywhere else. 1 is
the vector containing only ones.

Thus, the preference vector of a variable contains the sum of dislikes (negative
preferences) caused by register constraints of program points where the variable
is alive. To calculate the preferences, we perform a backward walk over the
program’s basic blocks so we can keep track of live values. When we encounter a
constrained definition/use we add preferences to all other variables alive at that
point. This is a simple flow-insensitive analysis and can be done in a single pass
over the program.

3.3 Affinity Chunks

Besides register constraints, φ-functions are the second source of shuffle code. A
“bad” register assignment can cause a cascade of move instructions to be inserted
at the end of a φ predecessor block. In contrast to constrained instructions, the
desirable register of an operand of a φ-function is not fixed a priori: It depends on
which registers the other operands and the result variable of the φ are allocated
to. Therefore, we do not consider φ-functions when performing the preference
analysis but modify the preference vectors during the assignment process. When
coloring a φ-function, a preference for the chosen color is added to the preference
vectors of the still uncolored variables of the same affinity chunk.

A second observation is that the constraints of the arguments of a φ-function
affect the φ-function as well. Consider the example in Figure 4b. One variable
of the affinity chunk of the φ-function needs to be in R0 upon its definition.
Assigning z any other register than R0 will cause a move on the loopback edge
which needs to be avoided at all costs. Hence, we propagate the preference for R0
to the whole affinity chunk of y and thus try to assign x and z to R0 as well.
In general, the preferences for all members of an affinity chunk are weighted by
their execution frequencies and distributed among its members.

When coloring a φ-function, we want to assign that register to all not-yet
colored variables of the φ’s affinity component. However, such an affinity com-
ponent can exhibit interferences within itself. Thus, one usually splits up the
affinity components into interference-free chunks by aggressive coalescing. Ag-
gressive coalescing itself is an NP-complete problem; it is an instance of a mini-
mum multi-cut (see [9, 3] for example). In practice, one is content with a heuristic
that greedily tries to merge chunks. Let C and D be two chunks that we want
to merge. To merge the chunk, there must not exist an interference between



both chunks. If there is, the chunks cannot be merged and we “sacrifice” every
affinity edge between both chunks. That means, that we no longer try to assign
the same color to the variables of the move instruction, represented by the lost
affinities. Of course, the order in which the chunks are merged decides on how
good the results are, i.e. how many moves are introduced. This greedy heuristic
requires an interference check between the two chunks. Naively, one could test
each variable pair for interference, resulting in a quadratic algorithm. Recently,
Boissinot et al. [11] gave a linear algorithm, exploiting SSA properties, to per-
form that check. However, this linear check still has to be performed whenever
two chunks are to be merged.

To avoid this overhead, we do not split chunks up to the last interference
edge but allow for remaining interferences within a chunk. This does not pose
any correctness problems, as we use these chunks only to propagate register pref-
erences when a φ-function is colored. In the worst case, we propagate preferences
to a variable that interferes with that φ-function.

Our “approximated” chunks are computed using a union-find data structure.
Whenever we encounter a φ-function, we check, whether the result variable of
that φ-function and its operands interfere. This is can be done efficiently since
we still have the set of live-in variables calculated by the liveness analysis. The
chunk of an operand is merged with the φ’s if the operand and the φ do not
interfere. This can be done in hand with the preference analysis.

3.4 Optimistic Move Insertion

There is further room for reducing the number of move instructions: The fixed
positions of the parallel moves aren’t always optimal. A typical situation is shown
in Figure 5a:

w〈R0〉 ← call()
x←

...
← x〈R0〉
← w

(a) Program P

w〈R0〉 ← call()
x〈R1〉 ←

...
w〈R2〉 ← w〈R0〉
x〈R0〉 ← x〈R1〉

← x〈R0〉
← w〈R2〉

(b) Assignment for P

w〈R0〉 ← call()
w〈R1〉 ← w〈R0〉
x〈R0〉 ←

...
← x〈R0〉
← w〈R1〉

(c) Assignment with opti-
mistic move

Fig. 5: Candidate for optimistic move insertion

When the allocator reaches the assignment to variable x register R0 is al-
ready occupied by w. A classical allocator would assign the next free register



to x, say R1. A fixup would only occur before the constrained use of x. At this
point however at least 2 move instructions are necessary: Variable w has to be
moved away from R0 and variable x into it. Instead, it is more beneficial to
move variable w away from R0 before the assignment to x as shown in Figure 5c
compared to Figure 5c.

This situation is handled by optimistically inserting such early moves into
the program: When the allocator finds that a desired output register is occupied
by another variable then we determine the costs of moving that variable into
another register. The cost is the sum of the preference differences when freeing
the register by moving the occupying variable away and the preference differences
when assigning the next possible register instead of the desired one. We compare
these costs with the execution frequency of the current block. Higher costs are an
indication that a move at the current position is cheaper than a later fixup. The
move instruction is created optimistically. An improved version of get register is
shown in Algorithm 3.

Algorithm 3 Choosing a register with optimistic move insertion

proc get register(var, occupied):
sort var.prefs by preference
for (reg,pref) in var.prefs:

if reg /∈ occupied:
return reg

# Determine costs for moving the variable
# which occupies the register away
ovar ← reg.current variable
sort ovar.prefs by preference
for (oreg,opref) in ovar.prefs:

if oreg /∈ occupied:
other win ← opref − oreg.current pref
break

next pref ← preference value for next register
win ← next pref − pref
if win + other win > block.execfreq:

create move from reg to oreg
return reg

4 Block Coloring Order

To retain the properties by SSA-based register allocation, we color basic blocks
in dominance order. This still provides many valid visiting orders. We choose an



Algorithm 4 Determining the block coloring order

proc blockorder():
for b in reverse postorder(blocks):

t ← 0
for p in control flow predecessors(b):

if t < trace[p]:
t ← trace[p]

trace[b] ← t + frequency(b)
order ← ∅
for b in sort(blocks, by: trace)

order ← add trace(order, block)
return order

proc add trace(order, block):
if not block ∈ order:

best trace ← 0
best pred ← null
for p in preds(block)

if backedge(p, block): continue
if best trace < trace[p]:

best trace ← trace[p]
best pred ← p

if not best pred ← null:
order ← add trace(order, block)

order ← order + block
return order



fA = 1
tA = 1A

fB = 0.5
tB = 1.5B

fC = 5.5
tC = 6.5C

fD = 5
tD = 11.5 D

fE = 0.5
tE = 7 E

fF = 1
tF = 8F

Fig. 6: A control-flow graph annotated with execution frequencies (f) and trace
values (t)

order in which we color the most often executed basic blocks first while coloring
paths beginning at the start block. By following the control flow along the “hot”
paths, there is always one control flow predecessor colored already and we can
assign φ-functions the same color as their operands in this predecessor.

To determine these paths in the control flow graph, we calculate a trace value
for each basic block: First we gather execution frequencies for each basic block.
This can be done heuristically (cf. Wagner et al. [10]) or they can be obtained
from profiling information. Using the execution frequencies, we calculate the
trace value of each block: The trace value of a block is the maximum of the trace
values of its control flow predecessors (disregarding back edges) plus its own
execution frequency. This approximates the amount of instructions executed
from the start to each block while considering that a block can be executed
multiple times.

Then we select the block with the highest trace value and determine a path
to the start. Before this block is colored, we color its control flow predecessor
(again ignoring back edges) which has the highest trace value. In turn, we repeat
this until we reach the start block. This path then is colored in reverse order.
After that, we select the block with the highest trace value from the remaining
uncolored blocks and again construct a path towards the start block but this
time stopping at some already colored block. Again, this new path is colored in
reverse order and the process is repeated until all blocks are colored. Algorithm 4
shows the procedure as pseudo code.

In the example in Figure 6 the block with the highest trace value is D,
therefore we first color the path A, C, D. Of the remaining, i.e. uncolored,
blocks block F has the highest trace value, so we color its path E, F (A and C
are already colored). B is colored last.



5 Experimental Evaluation

We implemented the presented coalescing algorithm in the libFirm [12] com-
piler. This compiler produces code for the x86 architecture and features a com-
pletely SSA-based register allocator as presented in [9]. All measurements were
conducted on the integer part CINT2000 of the CPU2000 benchmark [13]. The
program 252.eon is missing because the compiler does not support C++. The
time measurements were performed on a Core 2 Duo 2GHz PC with 2GB RAM
running a Linux 2.6.24 kernel. The benchmarks mostly exercise the seven general-
purpose registers of the x86. The execution frequencies were statically estimated
using a Markov-chain model [10]. We compare the algorithm presented in this
paper with our previous work performing colaescing by recoloring[5] after regis-
ter allocation.

5.1 Compile Time

Figure 7 shows the runtime of the preference-guided assignment algorithm de-
scribed in this paper running on the entire CINT2000 benchmark set. We do not
show CFGs larger than 2000 instructions because they are rare and unnecessarily
scale the figure. The runtime behavior of the few CFGs not shown is consistent
with those shown.

CFGs as large as 2000 instructions are processed well within 20 msecs (, 10µs
per instruction) on the machine we experimented on. On average, an instruc-
tion took 6.2µs to allocate while the average speed of the recoloring approach
is 14.1µs. In comparison to the recoloring algorithm the approach presented here
accelerates the allocation by a of factor 2.27.

5.2 Code Quality

We evaluate the quality of the produced code based on two experiments:

1. Counting the number of executed move/swap instructions in the bench-
marks.

2. Measuring actual runtime of the benchmarks.

Counting moves and exchanges. By instrumenting the created binaries using
Valgrind [14], we counted the number of move and swap instructions in the runs
of the benchmarks. Table 1 shows the results of counting the move/exchange
instructions.

The column “No Coalescing” corresponds to not performing any sophisti-
cated coalescing at all: For live-range splits that are due to register constraints,
get register will try to assign targets and corresponding sources at parallel moves
the same register if possible. Else, no effort is made to coalesce copies.

The column “Pref. Guided” denotes the algorithm presented in this paper
and “Recoloring” is the aforementioned recoloring approach. For every evaluated
coalescing algorithm, we show the number of move/swap instructions and the



0 500 1000 1500 2000
0

5

10

15

20

Number of Instructions

A
llo

ca
ti

on
T

im
e

[m
se

c.
]

Fig. 7: Allocator runtime

Benchmark No Coalescing Pref. Guided Recoloring
Copies Swaps Percent Copies Swaps Percent Copies Swaps Percent

164.gzip 24.1 18.3 11.76% 8.5 2.0 3.22% 5.8 0.3 1.88%
175.vpr 19.2 7.0 12.12% 11.7 1.1 6.28% 7.5 1.0 4.28%
176.gcc 16.9 7.9 14.02% 7.8 0.9 5.42% 6.5 0.4 4.37%
181.mcf 4.4 3.1 13.66% 3.3 0.0 6.67% 2.9 0.0 5.89%
186.crafty 29.0 4.9 16.30% 18.7 1.1 10.16% 17.5 1.0 9.58%
197.parser 34.4 11.9 13.19% 16.2 3.1 5.98% 13.9 1.8 4.93%
253.perlbmk 50.0 19.3 15.69% 23.3 1.4 6.23% 21.6 0.6 5.62%
254.gap 31.2 6.2 13.81% 17.2 1.4 7.40% 15.5 1.1 6.65%
255.vortex 44.0 3.8 13.11% 11.2 0.7 3.69% 9.5 0.3 3.03%
256.bzip2 34.6 9.8 14.14% 19.9 1.7 7.53% 17.0 3.1 7.01%
300.twolf 17.4 17.6 10.89% 10.3 5.6 5.25% 8.0 3.4 3.85%

Average 27.7 10.0 13.47% 13.5 1.7 5.93% 11.4 1.2 4.97%

Table 1: Number of executed move and swap operations in billions



percentage of all instructions being moves or exchanges. The preference-guided
approach significantly reduces moves and swaps but does not reach the perfor-
mance of the recoloring apporach. Performing almost no coalescing results in
13.46% of all executed instructions being moves or swaps. This number is de-
creased by our approach to 5.93% and to 4.97% by the recoloring technique.
Hence, the code quality of the technique presented in this paper is very close
to the recoloring approach which currently is one of the best conservative coa-
lescers [5].

Runtime of the benchmarks. Figure 8 shows the runtime of the benchmarks
normalized to “No Coalescing” as explained above. We see that performing co-
alescing is important and moves are not for free: The benchmark runtimes are
decreased by 5%. Furthermore, the preference-guided approach is on par with
the recoloring technique. Between those two, there is no clear winner. However,
we suspect (without having verified this claim) that a smaller CPU with less
pipelines and no out-of-order scheduling is more susceptible to register moves.
Therefore, the recoloring approach might produce faster programs on such sys-
tems.
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Fig. 8: SPEC CINT2000 runtimes with different coalescing schemes

Finally, to show that our compiler produces high-quality results and the SSA-
based register allocation technique is competetive, we compare the benchmark
runtimes against those produced by GCC 4.2.4 and LLVM 2.5. libFirm has the
smallest code base among these compilers and performs only a subset of the
optimizations the others do. All compilers ran on maximum optimization level



and had machine-dependent optimizations for the benchmarking machine (see
above) turned on6. As can be seen in Figure 9 the runtime of the benchmark
programs produced by our compiler is on par with the others.
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Fig. 9: SPEC CINT2000 runtimes relative to GCC and LLVM

6 Related Work

Graph-based approaches. The first graph-coloring allocator due to Chaitin et
al. [1] used aggressive coalescing and did not make any effort at all to respect
the chromatic number of the graph. Since then, a lot of work was done on
safe coalescing. Briggs et al. [15] introduced conservative coalescing. To decide
whether an affinity can be coalesced, they considered the degree of the resulting
coalesced node. Only if that node’s degree was lower than k, the copy was coa-
lesced. George and Appel’s iterated coalescing [16] improves upon conservative
coalescing by applying Briggs et al.’s criterion and a new one iteratively to the
graph. Park and Moon [17] left the road of safe coalescing and improved upon
the aggressive scheme.

Live-range splitting. Live-range splitting has often been proposed to aid coloring.
To our knowledge, Fabri [18] was first to observe this. Appel and George [19]
presented an ILP approach to reduce the register pressure everywhere to k by
6 -O3 -fomit-frame-pointer -march=native



allowing every live range being split at every program point. Lueh et al.’s fusion
based allocator [20] integrates live-range splitting into the register allocator.
They start by building the interference graphs of certain regions (that can be
basic blocks, loops, traces, etc.) that are not imposed by the allocator but can be
chosen by the compiler writer. In a later step, the interference graphs are fused
to form the complete interference graph. During this fusion process, live ranges
can be split or spilled if the fused interference graph was no longer colorable.
Recently, Nakaike et al. [21] proposed a dynamic approach that splits around
basic blocks and uses coalescing to unify split live-ranges in hot code regions.

Linear-scan allocators. Wimmer and Mössenböck [22] give a highly tuned ex-
tension of Traub’s version [23] of linear scan. Their register hints is a similar
technique to our preference propagation for φ-functions. Furthermore, they can
take register constraints into account. Recently, Sarkar and Barik [24] introduced
more aggressive live-range splitting to linear scan allocators however without
performing coalescing.

SSA-based register allocation. Budimlic et al. [25] pioneered in coalescing on
SSA-form programs already using many properties that SSA-based register al-
location relies on. However, they are only concerned with aggressive coalescing.
In 2005, three groups [26, 2, 4] independently from each other discovered that
the interference graphs of SSA-form programs are chordal. All yet published
coalescing techniques tailored to SSA-based register allocation use interference
graphs.

Bouchez et al. [3] investigate the theoretic background of coalescing. They
show that coalescing is NP-complete concerning the number of affinities, also
in the SSA-based setting. Later, Bouchez et al. proposed several extensions to
conservative coalescing [27]. Brisk [28] presents a biased coloring algorithm for
chordal graphs. Hack et al. [4, 5] present two approaches based on recoloring:
First, the program is colored using the standard algorithm presented in Section 2.
Then, the color assignment is changed by assigning move-related nodes the same
color. Color clashes are resolved recursively through the graph.

Pereira and Palsberg [29] consider the problem of subregisters. In this setting,
optimal allocation even inside a basic block is NP-complete. Therefore, they split
live ranges after every program point and allocate each instruction separately.
In doing so, they process the program points in dominance order and perform
coalescing only along dominance order. Especially, moves on loop back edges are
not coalesced.

7 Conclusions

In this paper, we presented an SSA-based register assignment algorithm that uses
register preferences to bias the register assignment in order to reduce shuffle code.
In doing so, we do not need a separate coalescing pass in the register allocator.
Furthermore, building the interference graph, which is considered a red rag for



just-in-time compilation, is no longer necessary. Compared to a state-of-the art
coalescing technique, our algorithm gives competitive results while reducing the
runtime of the register allocation by a factor of 2.27.

Acknowledgements. We thank Michael Beck, Alain Darte, Gerhard Goos,
Daniel Grund, Fabrice Rastello, Jan Reineke, and Christian Würdig for several
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