Rechnerübung zu Theorembeweiser und ihre Anwendungen

Prof. Dr.-Ing. Gregor Snelting Dipl.-Inf. Univ. Daniel Wasserrab

Lehrstuhl Programmierparadigmen IPD Snelting Universität Karlsruhe (TH)

Teil IV

Rekursive Datentypen und primitive Rekursion

Deklaration von Funktionen

Festlegen von Namen und Signatur einer Funktion: Deklaration dazu in Isabelle das Schlüsselwort **consts:**

```
\textbf{consts} \ \texttt{length} \ :: \ \texttt{"'a list} \ \Rightarrow \ \texttt{nat"}
```

Vorsicht! Gibt der Funktion noch keinerlei Semantik! Wird in den Übungen verwendet, um Funktionen einzuführen, die sie selbst noch definieren (also mit Semantik versehen) sollen

Rekursive Datentypen

Viele Datentypen mit Selbstbezug, z.B.

- natürliche Zahl (ungleich 0) ist Nachfolger einer natürlichen Zahl
- nichtleere Liste ist Liste mit zusätzlichem Kopfelement
- nichtleere Menge ist Menge mit einem zusätzlichen Element

Formalisierung in Isabelle/HOL am Bsp. natürliche Zahlen:

datatype nat = 0 | Suc nat

Also Konstruktoron von nat: 0 und Suc (Präfix)

Rekursive Datentypen

Viele Datentypen mit Selbstbezug, z.B.

- natürliche Zahl (ungleich 0) ist Nachfolger einer natürlichen Zahl
- nichtleere Liste ist Liste mit zusätzlichem Kopfelement
- nichtleere Menge ist Menge mit einem zusätzlichen Element

Formalisierung in Isabelle/HOL am Bsp. natürliche Zahlen:

datatype nat = 0 | Suc nat

Also Konstruktoren von nat: 0 und Suc (Präfix)

Parametertypen

verschiedene Typen in Containerdatentypen: Parametertyp 'a kann bei Verwendung entprechen initialisiert werden (muss aber nicht)

```
datatype 'a list =

Nil ("[]")
| Cons 'a "'a list" (infixr "#" 65)

Konstruktoren von list: [] und # (Infix) (x#[] = [x])

Funktionsdeklaration kann jetzt z.B. so aussehen:

consts foo :: "nat list ⇒ bool"

consts bar :: "nat ⇒ bool list ⇒ nat"

consts zip :: "'a list ⇒ 'a"
```

Parametertypen

Beispiel: Listen mit Typparameter

datatype 'a list =

verschiedene Typen in Containerdatentypen: Parametertyp 'a kann bei Verwendung entprechen initialisiert werden (muss aber nicht)

```
Nil ("[]")
| Cons 'a "'a list" (infixr "#" 65)
Konstruktoren von list: [] und # (Infix) (x#[] = [x])
Funktionsdeklaration kann jetzt z.B. so aussehen:
   consts foo :: "nat list ⇒ bool"
   consts bar :: "nat ⇒ bool list ⇒ nat"
   consts zip :: "'a list ⇒ 'a"
```

Parametertypen

verschiedene Typen in Containerdatentypen: Parametertyp 'a kann bei Verwendung entprechen initialisiert werden (muss aber nicht)

```
Beispiel: Listen mit Typparameter

datatype 'a list =

Nil ("[]")
| Cons 'a "'a list" (infixr "#" 65)

Konstruktoren von list: [] und # (Infix) (x#[] = [x])

Funktionsdeklaration kann jetzt z.B. so aussehen:
```

```
consts foo :: "nat list \Rightarrow bool"
consts bar :: "nat \Rightarrow bool list \Rightarrow nat"
consts zip :: "'a list \Rightarrow 'a"
```

primrec

Definition von Funktionen über rekursive Datentypen: **primrec** kombiniert Deklaration und Definition (frühere **consts** löschen!) ein Parameter der Funktion muss in seine Konstruktoren aufgeteilt werden Beispiel:

```
primrec length :: "'a list ⇒ nat"
   where "length [] = 0"
   | "length (x#xs) = Suc(length xs)"

primrec tl :: "'a list ⇒ 'a list"
   where "tl [] = []"
   |"tl (x#xs) = xs"
```

primrec

```
Es müssen nicht alle Konstruktoren spezifiziert werden:

primrec hd :: "'a list ⇒ 'a"

where "hd(x#xs) = x"

primrec last :: "'a list ⇒ 'a"

where "last(x#xs) = (if xs=[] then x else last xs)"
```

@ und rev

weiterer Infixoperator: @ hängt Listen zusammen

Beispiel: [0,4]@[2] = [0,4,2]

rev dreht Listen um, also rev [0,4,2] = [2,4,0]
Wie lautet die entsprechende Deklaration/Definition

@ und rev

weiterer Infixoperator: @ hängt Listen zusammen

Beispiel: [0,4]@[2] = [0,4,2]

rev dreht Listen um, also rev [0,4,2] = [2,4,0] Wie lautet die entsprechende Deklaration/Definition?

@ und rev

```
weiterer Infixoperator: @ hängt Listen zusammen Beispiel: [0,4]@[2] = [0,4,2] rev dreht Listen um, also rev [0,4,2] = [2,4,0] Wie lautet die entsprechende Deklaration/Definition? primrec rev :: "'a list \Rightarrow 'a list" where "rev [] = []" | "rev(x#xs) = rev(xs) @ [x]"
```

Strukturelle Induktion

Beweise über rekursive Datentypen mittels struktureller Induktion d.h. Induktion über Konstruktoren des Datentyps

```
In Isabelle/HOL:
lemma hd_Cons_tl: "xs ≠ [] ⇒ hd xs # tl xs = xs"
apply(induct xs)
apply auto
done
wendet strukturelle Induktion mit Datentynkonstruktoren von
```

wendet strukturelle Induktion mit Datentypkonstruktoren von xs an automatische Taktik beendet Beweis

Problem: zu spezielle Induktionshypothesen

```
lemma "(rev xs = rev ys) = (xs = ys)"
Induktion auf xs ermöglicht Lösen des []-Falles
bei Induktionsschritt bleibt:
```

 \bigwedge a xs.

```
(rev xs = rev ys) = (xs = ys) \Longrightarrow
(rev (a # xs) = rev ys) = (a # xs = ys)
```

Problem: zu spezielle Induktionshypothesen

```
lemma "(rev xs = rev ys) = (xs = ys)"
Induktion auf xs ermöglicht Lösen des []-Falles
bei Induktionsschritt bleibt:
```

$$\bigwedge a xs.$$

$$(rev xs = rev ys) = (xs = ys) \Longrightarrow$$

 $(rev (a # xs) = rev ys) = (a # xs = ys)$

nicht lösbar!

ys kann nicht gleich xs und a # xs sein!

Idee: ys muss im Induktionsschritt freie Variable sein!
Lösung: ys nach arbitrary Schlüsselwort in Induktionsanweisung
damit Induktionsschritt für ys meta-allquantifiziert:
apply(induct xs arbitrary:ys)

Resultiert in Induktionsschritt:

```
a xs ys.

(\bigwedge ys. (rev xs = rev ys) = (xs = ys)) \Longrightarrow

(rev (a # xs) = rev ys) = (a # xs = ys)
```

Heuristiken für (bisher scheiternde) Induktionen:

- alle freien Variablen (außer Induktionsvariable) mit arbitrary
- Induktion immer über das Argument, über das die Funktion rekursiv definiert ist
- Ziele durch Ersetzen von Konstanten durch Variablen generalisieren

Idee: ys muss im Induktionsschritt freie Variable sein!
Lösung: ys nach arbitrary Schlüsselwort in Induktionsanweisung
damit Induktionsschritt für ys meta-allquantifiziert:
apply(induct xs arbitrary:ys)

Resultiert in Induktionsschritt:

```
\bigwedgea xs ys.

(\bigwedgeys. (rev xs = rev ys) = (xs = ys)) \Longrightarrow

(\text{rev (a # xs) = rev ys) = (a # xs = ys)}
```

Heuristiken für (bisher scheiternde) Induktionen:

- alle freien Variablen (außer Induktionsvariable) mit arbitrary
- Induktion immer über das Argument, über das die Funktion rekursiv definiert ist
- Ziele durch Ersetzen von Konstanten durch Variablen generalisieren

Idee: ys muss im Induktionsschritt freie Variable sein!
Lösung: ys nach arbitrary Schlüsselwort in Induktionsanweisung damit Induktionsschritt für ys meta-allquantifiziert:

apply(induct xs arbitrary:ys)

Resultiert in Induktionsschritt:

```
\bigwedgea xs ys.

(\bigwedgeys. (rev xs = rev ys) = (xs = ys)) \Longrightarrow

(rev (a # xs) = rev ys) = (a # xs = ys)
```

Heuristiken für (bisher scheiternde) Induktionen:

- alle freien Variablen (außer Induktionsvariable) mit arbitrary
- Induktion immer über das Argument, über das die Funktion rekursiv definiert ist
- Ziele durch Ersetzen von Konstanten durch Variablen generalisieren

37 / 37